计算原理
Deprecated
should not be viewed as proper notes!
Chap 1
- Power Set $2^S = \set{T|T\subseteq S}$
- Partition $\sqcap$
- Binary Relation $R\subseteq A\times B$
- Inverse $R^{-1}\subseteq B \times A$
- Function: A relation for every $a\in A$ there is one and only one $b\in B$
- one-to-one 每个函数值不同, onto 可逆, bijection/one-to-one correspendence
- reflexive $(a, a)\in R$, symmetric $(a, b)\rightarrow(b,a)$, antisymmetric$(a, b)\rightarrow !(b,a)$, transitive$(a,b), (b, c)\rightarrow (a, c)$
- Equivelence class $[a]=\set{b|(a, b)\in R}\ or\ R_a$
- Partial Order
- Equinumerous $\exists\ bijection\ f:A\rightarrow B$
- Math principle:
- Mathematical Induction
- Pigeonhole Principle
- Diagonaliztion Principle(mainly for uncountable)
- $2^\mathbb{N}$ is uncountable
- Closure
- $w^R$ reverse
- if$\Sigma$is finite, then $\Sigma^\ast$ is countably inf
- $L^+=LL^\ast$
- Regular: $\Sigma \cup \set{(, ), \cup, \ast}$
- $\mathscr{L}(\Theta)=\emptyset, \mathscr{L}(a) = \set{a}$

Chap 2
- DFA, NFA
- "V" start, arrow trans, double circ accept
- $M_{DFA}(K, \Sigma, \delta, s, F)$ K states, $\Sigma$ alphabet, $\delta(q, a)=q'$
- $M_{NFA}(K, \Sigma, \Delta, s, F)$ K states, $\Sigma$ alphabet, $(q, a, q')\in \Delta$
- NFA to DFA
- $E(p)$所有p能e到的状态
- $K'=2^K, s'=E(s), F'=$所有包含accept状态的子集$\delta(Q, a)=$所有Q中元素可以到达的状态的集合
- 等价证明:归纳法$(p, w)\vdash^\ast_M(q, e)\Leftrightarrow (E(q), w)\vdash^\ast_{M'}(p\in P, e)$, $w=e$时成立,$w<k$时成立,考虑k时


- regular close under $\cup$ Cat $\ast$ $\bar{L}$ $\cap$(用笛卡尔积来同时跑两个)
- regular to FA: use closure to construct from pieces
- FA to regular: 一个一个删状态,确保一个输入,一个输出。
- Extended pumping theorem: $\exists n\geq 1, \forall |w|\geq n, w=xyz\rightarrow y\neq e, |xy|\leq n\ or\ |yz|\leq n, \forall i\geq 0, xy^iz\in L$
- reduction: elimiate all unreachable, all equive(reach accpt on same strings)
- Equive class($\approx_{L(M)} $): 对任意的sufix,类中的所有串是否属于L都一致; $\sim_M$到同一个状态
- 有有限个equive class等价与regular
- 找法,从F和非F开始,根据0步,1步,...推导是否相同来分类,直到稳定或者只有自己一个
- NFA DFA 转换expo,其他poly
Chap 3
- CFG
- $G(V, \Sigma, R, S)$ V所有人,R规则
- 证明,根据规则递归
- CFG close under $\cup$ Cat $\ast$, 交FA为CFG
- derivative similar,先做左边比先做右边靠前,先考虑早的步骤,从第一步不同的开始算
- PDA
- $M(K, \Sigma, \Gamma, \Delta, s, F)$, $\Gamma$ stack symbol, $\Delta=(K\times (\Sigma + e)\times \Gamma^\ast)\times(K\times \Gamma^\ast)$
- accept on final and empty stack
- CFG to PDA
- $(s, e, e)(f, S);(f, e, rule_l)(f, rule_r);(f,a,a)(f,e)$
- PDA to CFG
- simple PDA,增加栈底Z得到单个$s'$和$f'\in F$
- $S=\lang s,Z,f'\rang\newline((q,a,B)(r,C)), \forall p\lang q, B, p\rang\rightarrow a\lang r, C, p\rang\newline((q,a,B)(r,C_1C_2)),\forall p',p,\lang q, B, p\rang\rightarrow a\lang r,C_1,p'\rang\lang p', C_2, p\rang\newline \forall q\in K\lang q,e,q\rang\rightarrow e$
- pumping theorem: $\exists n, \forall |w|>n, w=uvxyz, |vy|\geq 1, uv^ixy^iz\in L, i\geq 0$
- 全poly
- CNF: $R\subseteq (V-\Sigma)\times V^2$(不能有单个,其他完全) 去长,去e,去单
- 利用CNF判断:

Chap 4
- TM
- $TM(K,\Sigma,\delta,s,H)$, $\delta=(K-H)\times \Sigma\rightarrow K\times(\Sigma+\rightarrow+\leftarrow)$
- Config $(q, \vartriangleright a, aba)=(q,\vartriangleright\underbar{a}aba)$
- R, L 移动一个;$R_\sqcup$移动到第一个空;可以在条件上声名变量
- recursive TM halt and acc or rej, recursive function if TM compute f
- compute init be $(s, \vartriangleright \sqcup, w)$
- re TM hlt means yes no halt mean no, semidecide
- recursive close on all
- re colse on all but inverse
- multi tape: 右上角标带子,按偏移分出2k个,一个放带子,一个放位置,所有操作变成切换到带子,然后操作
- NTM 在某个状态停机且有合理输出
- NTM to TM
- search from one step to inf
- Grammer $(V,\Sigma, R, S)$
- Grammer to TM: use a tape to try generate a tring can choose any rule at each step, check generated is input on every step
- TM to Grammer: 给TM加一个清带机,使得终结于$(h,\vartriangleright\sqcup,)$因此$S\rightarrow\vartriangleright\sqcup h\vartriangleleft$然后根据规则倒着获取规则,用状态作为","来表示带头位置
- Grammetically computable=recursive: $SwS\Rightarrow v\ for\ f(w)=v$
- function
- $zero_k(\overrightarrow{X})=0$
- $id_{k,j}(\overrightarrow{X_k})=x_k[j]$
- $succ(n) = n+1$
- primitive recursive
- m-n = m~n
- digit(m,n,p) = n的mod p中的第m位
- 对所有的recursive函数,排一排,造一个g(n)是第n个函数调用n,然后+1,这跟所有都不一样,这玩意不recursive
- $\mu$-recursive = recursive = TM computable
Chap 5
- U
- q num for state anum for symbol, $\delta$ for "M"
- LH re not r, U semidecide LH, for LH$_1$ copy then U semidecide it, for !LH$_1$ it is not even a re
- recursive -> decidable
- algorithm -> recursive
- if for every i in L f(i) in L2 then L reduce to L2, L n recur, L2 n recur
- re turning-enumerable
- recursive hexilogical-enumerable
- grammer -> re -> no alg to decide if w in L(G)
- cfg $\cap$ cfg =? $\emptyset$ is re